Unified model and reverse recovery nonlinearities of the driven diode resonator.
نویسندگان
چکیده
We study the origins of period doubling and chaos in the driven series resistor-inductor-varactor diode (RLD) nonlinear resonant circuit. We find that resonators driven at frequencies much higher than the diode reverse recovery rate do not show period doubling. Models of chaos based on the nonlinear capacitance of the varactor diode display a reverse-recovery-like effect, and this effect strongly resembles reverse recovery of real diodes. We find for the first time that in addition to the known dependence of the reverse recovery time on past current maxima, there are also important nonlinear dependencies on pulse frequency, duty cycle, and dc voltage bias. Similar nonlinearities are present in the nonlinear capacitance models of these diodes. We conclude that a history-dependent and nonlinear reverse-recovery time is an essential ingredient for chaotic behavior of this circuit, and demonstrate for the first time that all major competing models have this effect, either explicitly or implicitly. Besides unifying the two major models of RLD chaos, our work reveals that the nonlinearities of the reverse-recovery time must be included for a complete understanding of period doubling and chaos in this circuit.
منابع مشابه
Nonlinear Modeling and Investigating the Nonlinear Effects on Frequency Response of Silicon Bulk-mode Ring Resonator
This paper presents a nonlinear analytical model for micromechanical silicon ring resonators with bulk-mode vibrations. A distributed element model has been developed to describe the dynamic behavior of the micromechanical ring resonator. This model shows the nonlinear effects in a silicon ring resonator focusing on the effect of large amplitudes around the resonance frequency, material and ele...
متن کاملAnalytical Solution for the Forced Vibrations of a Nano-Resonator with Cubic Nonlinearities Using Homotopy Analysis Method
Many of nonlinear systems in the field of engineering such as nano-resonator and atomic force microscope can be modeled based on Duffing equation. Analytical frequency response of this system helps us analyze different interesting nonlinear behaviors appearing in its response due to its rich dynamics. In this paper, the general form of Duffing equation with cubic nonlinearity as well as par...
متن کاملNonlinear electric metamaterials
We propose and design a new type of nonlinear metamaterials exhibiting a resonant electric response at microwave frequencies. By introducing a varactor diode as a nonlinear element within each resonator, we are able to shift the frequency of the electric mode stop band by changing the incident power without affecting the magnetic response. These elements could be combined with the previously de...
متن کاملReal World Modeling and Nonlinear Control of an Electrohydraulic Driven Clutch
In this paper, a complete model of an electro hydraulic driven dry clutch along with its performance evaluation has elucidated. Through precision modeling, a complete nonlinear physical and full order sketch of clutch has drawn. Ultimate nonlinearities existent in the system prohibits it from being controlled by conventional linear control algorithms and to compensate the behavior of the sy...
متن کاملComprehensive Decision Modeling of Reverse Logistics System: A Multi-criteria Decision Making Model by using Hybrid Evidential Reasoning Approach and TOPSIS (TECHNICAL NOTE)
In the last two decades, product recovery systems have received increasing attention due to several reasons such as new governmental regulations and economic advantages. One of the most important activities of these systems is to assign returned products to suitable reverse manufacturing alternatives. Uncertainty of returned products in terms of quantity, quality, and time complicates the decis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 68 2 Pt 2 شماره
صفحات -
تاریخ انتشار 2003